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Abstract. We present a quantum Langevin equation in the Schrodinger picture. The friction 
term is motivated by a natural generalisation of Wigner’s theorem or, equivalently, of 
Dirac’s superposition principle. We apply the model to spin relaxation and to the Brownian 
motion of the harmonic oscillator. In both cases the state vectors evolve asymptotically 
to a distribution which has the Gibbs state as corresponding density matrix. We show that 
for any initial state, the harmonic oscillator tends to a coherent state. 

1. Introduction 

The classical Langevin equation [ 11 describes a point particle undergoing frictional 
and stochastic forces in addition to deterministic conservative forces. The physical 
origin of the friction and fluctuations appear in the equation only via some constants 
depending on the macroscopic state of the environment. One generally believes that 
the non-Hamiltonian terms can be derived from a reduced description of the evolution 
of a larger isolated system. In some particular cases such dilation schemes have been 
made rigorous (see, e.g., [2]). 

Our aim in the present paper is to propose a quantum Langevin equation in the 
Schrodinger picture. That is to say, an evolution equation for the state vector which 
contains deterministic non-unitary frictional terms and stochastic unitary fluctuation 
terms in addition to the Hamiltonian term. In order to describe the friction we use a 
natural generalisation of Wigner’s theorem. The friction term so obtained is not unitary, 
but preserves the norm / /  $, 11 and the superpositions (with possibly time-dependent 
coefficients). The fluctuations are described by the same tools as in classical mechanics, 
namely by stochastic differential equations (SDE).  The noise may thus be termed 
classical noise. 

The two canonical examples are studied, namely the harmonic oscillator and the 
spin-;. In both cases the state vectors evolve asymptotically to a distribution which 
has the Gibbs state as corresponding density matrix. The temperatures of these Gibbs 
states, however, differ from the ones obtained for a classical oscillator, or a classical 
magnetic moment. 

f Supported by the Swiss National Science Foundation. 
$ Present address: Promogap, Section de Physique, 24 quai E Ansermet, 1211 Geneve 4, Switzerland. 
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2. Quantum Langevin equation 

The unitary evolutions on a Hilbert space X ,  +, = 
characterised by the following properties: 

4, = -iH$, ( H i  = H ) ,  are 

(a) U, is bijective, 

(c) U,  0 U, = U,,,, s-lim,,oU, = 1 and 1 1  U,$ll = I l + I I .  
(b l )  l(+l4)l= l(~t+IUd)l? 

This is the content of Wigner's theorem [3]. It is known that if dim X z 3 ,  then ( b l )  
is equivalent to [4] 

We shall need the following result. 
(b2) $14 e U,$i Ur4. 

Lemma. Any map U,: X +  X ( t  fixed) which satisfies (a)  and (b2) preserves the 
superpositions in the following sense: 

(d)  If + = a,& (with a, E C, 4, E %), then there are complex numbers P I  such 
that U,+ = Z pIU,4,  

Proof: From (a)  and (b2) it follows immediately that U, preserves subsets of 2 that 
are their own second orthocomplement, i.e. 

where M' ={+E XI+..L$V4 E M } ,  U,M = { U,+1+ E M } .  Now a subset M satisfying 
M = MLL is nothing but a closed linear subspace of 2 [5]. Hence, any vector I(, in 
the subspace generated by the 4,'s is mapped on a vector in the subspace generated 
by the U,cPi's. 

(e) ML' = M e (  U , M ) I L  = U,M 

In [6] we generalised Wigner's theorem by proving the following. 

Theorem. Any evolution on a Hilbert space with dim X a  3 which satisfies (a), (c) and 
(d),  or equivalently (a), (c) and (e), but not necessarily (b), is of the form +, = 
V,llr0/ 11 V,+o\l where V, is a semigroup of linear contracting operators (i.e. 1 1  V,$\l G 1 1  +I])?. 

If 2 = -iH - B (H'  =; H, Bt = B )  is the generator of V,, one obtains the following 
evolution equation: 

$, = - i W ,  + (W,, - B)+t. (1) 

Let us recall that any contraction semigroup can be dilated to a unitary evolution U, 
on a larger Hilbert space X: V, = PU,P with Prt= X [7,8]. The evolution (1) can thus 
be regarded as a reduced description [9]. 

Here we are mainly interested in the case B = kH ( k  > 0), for which one obtains 

(dldt)(H), ,  = - 2 k ( ( H 2 ) , ,  - ( H ) i , )  0. 

The system thus dissipates energy, except when it is in an eigenstate of H, and tends 
asymptotically to an eigenstate of H [ 101. The latter are thus analogous to limit circles. 
Note that only the ground state is stableS. 

t Assumption (a) can be weakened to: U, is one-to-one and U,% is a closed subspace of X 
$ From a semiclassical point of view one imagines that an electron in a state at rest (i.e. an eigenstate of 
H )  does not radiate. On the other hand, the non-stationary solutions correspond to states which move, and 
thus radiate. From this point of view one may think of the states at rest as the results of evolutionary 
processes, described for instance by equation (1). 
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In the following we consider the SDE obtained by adding classical fluctuations to 
(1) (%e= Y*(R")@C")t: 

d+, = - iH+,dt+k((H), , -H)+,dt- iq(+,  odo , ) - ip (+ ,  ods , ) - iS(+/ ,  odb,)  (2) 
where H = Ht is the Hamiltonian; q, p ,  S are the usual position, momentum and spin 
operators; (CO,, E,,  b , )  is the (2n +3)-dimensional Wiener process; q -  (+, 0 d o , )  = 
E;=, 4& 0 du i ,  and similarly for the p and S terms; and  0 denotes the Stratonovich 
product [ l ,  12]$ which is related to Ito's product by x, ody, = x,dy, +$dx,dy,. It is 
straightforward to verify that (2)  preserves the norm of +, (i.e. d(+,I+,)=O). This is 
not true if we use It8's product in (2) ,  hence our choice of the Stratonovich product. 

An interesting property of (2)  is the following: if + o =  ao~o+Po+o (ao ,  P o €  
@; xo, do E 21, then§ 

44 = a&, + P I 6  

where +,, x,, 4, are the solutions of (2) corresponding to the initial condition Go, ,yo, 
40; and the complex coefficients satisfy 

d a ,  = k a , ( ( H ) , ,  - ( W x c )  d t  d P ,  = kP,( (H) , ,  - ( W b , )  dt. 
Accordingly, (2)  preserves the superpositions, but with possibly time dependent 
coefficients. In fact, any evolution satisfying this generalised superposition principle 
is of the form (1) with possibly time dependent operators H and B [6]. 

3. Examples 

Our first example is the Brownian motion of a damped spin-:. Let 2 = C 2  and H = &ovz,, 
with obvious notations. Consider the following SDE: 

d+, =-iH$, d t+k( (H) , t -H)$ ,  dt-$i@,, odb, (3 1 
where the three-dimensional Wiener process b, satisfies dbk, dbl, = &Dk dt. For sym- 
metry reasons we put D, = D, = D,. Let m, =(U),,,,. From (3) one obtains((: 

d m , = w ( e , ~ ~ m , + k ( e , r \ m , ) ~ m , ) d t - m , ~ d b ,  (4) 
with e, = ( O , O ,  1). Equation (4) has been studied in [13]. If the magnetic energy is 
small compared with the thermal energy, which is the usual condition, one may linearise 
(4). This way one recovers the well known phenomenological Bloch equations [14], 
with TI = (2D,)- '  and T2 = ( D ,  + LIZ)-' the longitudinal and transversal relaxation 
times. 

The relation between m, and +, can be inverted: 

+,+J = $ ( I  + m , a ) .  

t Since X is infinite dimensional the mathematical meaning of (2) involves stochastic analysis in infinite 
dimensions. See for instance [ I l l .  I n  the examples we shall consider in the next section, however, either 
X is finite dimensional (spin-f) or, thanks to the completeness of the coherent states of the harmonic 
oscillator, (2) can be defined using only finite dimensional stochastic analysis. 
$The Stratonovich product is defined such that d(x,,v,) = x, 0 dy, + y ,  0 dx,. Hence, intuitively I+!J[ 0 dw, = 
$raj( I )  dr with w a very wiggly function. 
$ The following is an equality between random variables. It holds thus for all realisations, except a set of 
measure zero. 
) I  Where denotes the Stratonovich wedge product. For instance ( m  db) ,  = m 0 db, - m, 0 db, = 

( m h d b ) , - t ( D , + D , ) m , .  
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Consequently (3)  and (4) are equivalent. We d o  not know the time dependent solution 
of (4). However its asymptotic equilibrium distribution is easily found 

cLm(m) = N exp(-ywmZ/2)6(lml - 1) 

with y = 4k/  D, and N a normalisation constant. The corresponding distribution 
L ( 4 )  of the state vector and the density matrix pm are t :  

Am($)  = N exP(-Y(H)4)6(1/$I/ - 1) 

pm = +( 1 + m - u)poc( m)d3m = e-PH/Tr(e-PH) J 
where the natural temperature p satisfies 

tanh(p  * : w )  = coth(2kw/D,) - DJ2kw 

i.e. p = + y  + O( k /  D - ) ~ .  

Let 2= T2(rW), H = R a t a  (with [a ,  a’] = 1) and 
Let us now consider the Brownian motion of a damped quantum harmonic oscillator. 

d$ ,=  -iH~,dt+k((H),,-H)~,dr-iq$,~dw,-ip~,~de, ( 5 )  

with (dw,)2 = D,dt, (de,)’= D,dt, dw,da, = 0. In order to simplify the study of (5)  we 
shall use the completeness of the set of coherent states and the fact that (5) preserves 
the superpositions. For any complex number a let us denote la) the coherent state 
defined by a l a )  = ala) .  Let a ,  be a solution of the following SDE: 

d a ,  = -R(i+ k ) a , d t + 2 - ” 2 ( d a , - i d ~ l ) .  (6) 

A straightforward computation shows that whenever ala,) = &,la,), then d ( a / a , ) -  
atla,)) = 0, where dla,)  and d a ,  are computed with (5) and (6) respectively. Con- 
sequently if +o is a coherent state, then the solution +, of (5) is a coherent state-valued 
stochastic process, which can be computed with the help of the well known equation 
(6). Now, any state Go is a superposition of coherent states. Thus we have for the 
general solution of (5):  

CL, = ~ l l $ o l l / l l 4 , l l ~  * 4, 

where a , ( z )  is the solution of (6) with initial condition ao (z )  = z. 
Let 8, denote the solution of (6) with initial condition eo = 0, i.e. 8, = a,(O). One has 

d(la,(z)j2-18,12) = -2kR( /a , (~ ) I ’ -  18,/*)dt 6 0 

for all Z E C .  All the stochastic processes la,(z))  tend thus to 18,). Consequently!: 

1-11 

$1 - 18,) V+OE 2. 
The asymptotic distribution A,($) of (5) is thus concentrated on the coherent states 
and can be obtained from the well known solution of (6) [l]: 

A m ( 4 ) =  N ~ ~ P [ - ( ~ ~ / D ) ( N ) , ~ ~ ( I I ~ I I - ~ ) S ( ( Q ~ Q ) ~ - ( ~ ) B .  (a’),) ( 7 )  

Note that since the evolution (1) is nonlinear, the density matrix does not satisfy any closed evolution 
equation. 
t We conjecture that this result holds for all Hamiltonians, where the initial state of IO,)  is the ground state. 
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where, for simplicity, we assume Dp = D, = D. The corresponding density matrix is 

p a =  IC l a ) ( a l L ( l a ) ) d a  

= e-PH/Tr(e-PH) (8) 
with p satisfying eP = 1 + 2k/ D. 

4. Conclusion 

With a natural generalisation of Wigner’s theorem we motivated the study of a 
dissipative Schrodinger equation. The friction term applies as well to spins as to the 
spatial degrees of freedom (or  to any quantum system described by a Hilbert space). 
This non-unitary evolution can be dilated to a unitary evolution on a larger Hilbert 
space. We thus make contact with the framework of reduced descriptions, which is 
much used in statistical mechanics [8, 151. The difference with the traditional 
approaches, like the Pauli master equation, comes from the fact that in our case the 
reduction is done by a pure state preserving projection, in opposition to the partial 
trace projection [9]. Let us emphasise that this non-unitary evolution preserves the 
superpositions, but with time-dependent complex coefficients. In fact our proposal is 
the most general evolution which satisfies this generalisation of Dirac’s superposition 
principle [6]. 

By adding fluctuations in the standard way, we obtain models of the Brownian 
motion of the damped quantum harmonic oscillator and the damped spin-;, with 
irreversible approaches to the equilibrium Gibbs states. In both models classical aspects 
arise, though no  violation of the quantum principles, like the uncertainty principle, can 
occur since we are still in the framework of Hilbert space quantum kinetics. The 
quantum oscillator tends for large times to a coherent state and its mean position and 
momentum follow then the law of the Brownian motion of a damped classical oscil- 
latort. Moreover, in the high-temperature limit, the natural temperatures of the 
quantum and classical Gibbs state (see ( 7 )  and (8)) become equal. 

At this point one should mention the highly interesting work by R L Hudson, K R 
Parthasarathy, R F Streater and others on non-commutative noise [16-181. The objec- 
tives of this theory are somewhat similar to ours, but with some important differences. 
In particular, in this approach the system does not remain in a probabilistic mixture 
of pure states, but gets correlated to its environment. The atomic polarisation correla- 
tion experiments of Clauser, Aspect and others [ 19,201 give overwhelming evidence 
that such systems exist, even when spatially separated. However in these experiments 
the systems must be very well isolated. Indeed any perturbation has the effect of 
suppressing (or reducing if the perturbation is very weak) the violation of Bell’s 
inequality [ 191. Moreover, after the systems have interacted with the measurement 
apparatuses, a dissipative interaction of course, the systems are separated. Hence these 
experiments are not in contradiction with the assumption that there exist dissipative 
interactions that cause a continuous destruction of the phase relation between the 
system and its environment. On the other hand such interactions remain hypothetical. 

In  recent years a lot of effort has been directed to the study of friction in quantum 
mechanics (see, e.g., [21-231). Most approaches are restricted to wave mechanics, i.e. 

t This suggests the idea of a dynamical classical limit. 
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X =  L2(R" ) ,  and deal with nonlinear real potentials which are required to quantise the 
classical friction term proportional to minus the velocity. In fact, to the best of our 
knowledge, our proposal is the only one compatible with the Hilbert space structure 
of quantum kinematics. 
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